
9. Approximation Algorithms

Pukar Karki
Assistant Professor



2

Approximation Algorithms

✔ Many problems of practical significance are NP-complete.

✔ Even if a problem is NP-complete, there may be hope. We have at 
least three ways to get around NP-completeness.

1. First, if the actual inputs are small, an algorithm with exponential 
running time may be perfectly satisfactory. 

2. Second, we may be able to isolate important special cases that we 
can solve in polynomial time.

3. Third, we might come up with approaches to find near-optimal 
solutions in polynomial time (either in the worst case or the expected 
case).

✔ In practice, near-optimality is often good enough. We call an algorithm 
that returns near-optimal solutions an approximation algorithm.



3

Performance Ratios For Approximation Algorithms

✔ Suppose that we are working on an optimization problem in which 
each potential solution has a positive cost, and we wish to find a 
near-optimal solution.

✔ Depending on the problem, we may define an optimal solution as one 
with maximum possible cost or one with minimum possible cost; that 
is, the problem may be either a maximization or a minimization 
problem.



4

Performance Ratios For Approximation Algorithms

✔ We say that an algorithm for a problem has an approximation ratio of 
ρ(n) if, for any input of size n, the cost C of the solution produced by 
the algorithm is within a factor of ρ(n) of the cost C* of an optimal 
solution:

✔ If an algorithm achieves an approximation ratio of ρ(n), we call it a 
ρ(n) approximation algorithm.



5

Performance Ratios For Approximation Algorithms

✔ For a maximization problem, 0 < C ≤ C *, and the ratio C*/C gives the 
factor by which the cost of an optimal solution is larger than the cost 
of the approximate solution. 

✔ Similarly, for a minimization problem, 0 < C* ≤ C, and the ratio C/C*  
gives the factor by which the cost of the approximate solution is larger 
than the cost of an optimal solution.



6

The Vertex-Cover Problem

✔ A vertex cover of an undirected graph G = (V, E) is a subset V’  V ⊆
such that if (u, v) is an edge of G, then either u  V’  or v  V’  (or ∈ ∈
both).

✔ The size of a vertex cover is the number of vertices in it.

✔ The vertex-cover problem is to find a vertex cover of minimum 
size in a given undirected graph.

✔ We call such a vertex cover an optimal vertex cover. 



7

The Vertex-Cover Problem

✔ Even though we don’t know how to find an optimal vertex cover in a 
graph G in polynomial time, we can efficiently find a vertex cover that 
is near-optimal.

✔ The following approximation algorithm takes as input an undirected 
graph G and returns a vertex cover whose size is guaranteed to be 
no more than twice the size of an optimal vertex cover.



8

The Vertex-Cover Problem



9

The Vertex-Cover Problem

(a) The input graph G, which has 7 vertices and 8 edges.



10

The Vertex-Cover Problem

(b) The edge (b,c), shown heavy, is the first edge chosen by our algorithm. 

Vertices b and c, shown lightly shaded, are added to the set C containing the vertex 
cover being created. Edges (a, b), (c, e), and (c, d), shown dashed, are removed since 
they are now covered by some vertex in C. 



11

The Vertex-Cover Problem

(c) Edge (e, f ) is chosen; vertices e and f are added to C. 



12

The Vertex-Cover Problem

d) Edge (d, g) is chosen; vertices d and g are added to C.



13

The Vertex-Cover Problem

e) The set C, which is the vertex cover produced contains the 
six vertices {b, c, d, e, f, g}. 



14

The Vertex-Cover Problem

(f) The optimal vertex cover for this problem 
contains only three vertices: b, d, and e.



15

The Vertex-Cover Problem
✔ The variable C contains the vertex cover 

being constructed. Line 1 initializes C to the 
empty set.

✔ Line 2 sets E’ to be a copy of the edge set 
G.E of the graph.

✔ The loop of lines 3–6 repeatedly picks an 
edge (u, v) from E’, adds its endpoints u and 
v to C, and deletes all edges in E’ that are 
covered by either u or v.

✔ Finally, line 7 returns the vertex cover C 

✔ The running time of this algorithm is
O(V + E), 

using adjacency lists to represent E’.



16

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof:

✔ The set C of vertices that is returned by APPROX-VERTEX-COVER is a 
vertex cover, since the algorithm loops until every edge in G:E has been 
covered by some vertex in C.

✔ To see that APPROX-VERTEX-COVER returns a vertex cover that is at most 
twice the size of an optimal cover, let A denote the set of edges that line 4 of 
APPROX-VERTEX-COVER picked.

✔ In order to cover the edges in A, any vertex cover—in particular, an optimal 
cover C* - must include at least one endpoint of each edge in A.

✔ No two edges in A share an endpoint, since once an edge is picked in line 4, 
all other edges that are incident on its endpoints are deleted from E’ in line 6.

✔ Thus, no two edges in A are covered by the same vertex from C*, and we 
have the lower bound

|C*| ≥ |A| ----- i)

on the size of an optimal vertex cover. 



17

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof: (Cont...)

✔ Each execution of line 4 picks an edge for which neither of its endpoints is 
already in C, yielding an upper bound (an exact upper bound, in fact) on 
the size of the vertex cover returned:

|C| = 2|A| ----- ii)

✔ Combining equations,

|C| = 2|A|

or, |C| ≤ 2|C*|

✔



18

The Traveling-Salesman Problem

✔ In the traveling-salesman problem, we are given a complete 
undirected graph G = (V, E) that has a non-negative integer cost c(u, 
v) associated with each edge (u, v)  E, and we must find a ∈
hamiltonian cycle (a tour) of G with minimum cost.

 A TSP tour in the graph is 1-2-4-3-1. The cost of the tour is 10+25+30+15 which is 80.



19

The Traveling-Salesman Problem

✔ Let c(A) denote the total cost of the edges in the subset A  E:⊆

✔ Triangle inequality states that if, for all vertices u, v,  w   V,∈

c(u, w) ≤ c(u, v) + c(v, w)



20

The Traveling-Salesman Problem

✔ The triangle inequality seems as though it should naturally hold, and it 
is automatically satisfied in several applications.

✔ For example, if the vertices of the graph are points in the plane and 
the cost of traveling between two vertices is the ordinary euclidean 
distance between them, then the triangle inequality is satisfied.

✔ Furthermore, many cost functions other than euclidean distance 
satisfy the triangle inequality.



21

Traveling-Salesman Problem with the Triangle Inequality

● We first compute a structure—a minimum spanning tree—whose 
weight gives a lower bound on the length of an optimal traveling-
salesman tour.

● We shall then use the minimum spanning tree to create a tour whose 
cost is no more than twice that of the minimum spanning tree’s 
weight, as long as the cost function satisfies the triangle inequality.

● The following algorithm implements this approach, calling the 
minimum-spanning-tree algorithm MST-PRIM as a subroutine.

● The parameter G is a complete undirected graph, and the cost 
function c satisfies the triangle inequality.



22

Traveling-Salesman Problem with the Triangle Inequality



23

Traveling-Salesman Problem with the Triangle Inequality



24

Traveling-Salesman Problem with the Triangle Inequality

(a) A complete undirected graph. 

✔ Vertices lie on intersections of integer grid lines.
✔ For example, f is one unit to the right and two units up from h.
✔ The cost function between two points is the ordinary euclidean distance. 



25

Traveling-Salesman Problem with the Triangle Inequality

(b) A minimum spanning tree T of the complete graph, as computed by MST-PRIM.

✔ Vertex a is the root vertex.
✔ Only edges in the minimum spanning tree are shown.
✔ The vertices happen to be labeled in such a way that they are added to the main 

tree by MST-PRIM in alphabetical order. 



26

Traveling-Salesman Problem with the Triangle Inequality

(c) A walk of T , starting at a.

✔ A full walk of the tree visits the vertices in the order a, b, c, b, h, b, a, d, e, f, e, g, e, d, a.
✔ A preorder walk of T lists a vertex just when it is first encountered, as indicated by the 

dot next to each vertex, yielding the ordering a, b, c, h, d, e, f, g. 



27

Traveling-Salesman Problem with the Triangle Inequality

(d) A tour obtained by visiting the vertices in the order given by the preorder walk, 
which is the tour H returned by APPROX-TSP-TOUR.

✔ Its total cost is approximately 19:074.



28

Traveling-Salesman Problem with the Triangle Inequality

(e) An optimal tour H* for the original complete graph. 

✔ Its total cost is approximately 14.715.



29

Traveling-Salesman Problem with the Triangle Inequality

✔ Even with a simple implementation of MST-PRIM, the running time of 
APPROX-TSP-TOUR is Θ(V2). 

✔ If the cost function for an instance of the traveling-salesman problem 
satisfies the triangle inequality, then APPROX-TSP-TOUR returns a 
tour whose cost is not more than twice the cost of an optimal tour.

✔ Refer to Page 1114 of “Introduction to Algorithms”



30

The General Traveling-Salesman Problem

✔ If we drop the assumption that the cost function c satisfies the triangle 
inequality, then we cannot find good approximate tours in polynomial 
time unless P = NP.



31

The Set-Covering Problem

✔ An instance (X, F) of the set-covering problem consists of a finite set X and a family 
F of subsets of X, such that every element of X belongs to at least one subset in F:

✔ We say that a subset S   F covers its elements.⊆
✔ The problem is to find a minimum- size subset C  F whose members cover all of ⊆

X:

✔ We say that any C satisfying the above equation covers X.



32

The Set-Covering Problem
✔ The size of C is the number of sets it contains, rather than the 

number of individual elements in these sets, since every subset C 
that covers X must contain all |X| individual elements.

Fig: An instance (X, F) of the set-covering problem, where X consists of the 12 black points 
and F = {S1, S2, S3, S4, S5, S6}

✔ A minimum-size set cover is C = {S3, S4, S5}, with size 3. 



33

The Set-Covering Problem

✔ The set-covering problem abstracts many commonly arising 
combinatorial problems.

✔ As a simple example, suppose that X represents a set of skills that 
are needed to solve a problem and that we have a given set of people 
available to work on the problem.

✔ We wish to form a committee, containing as few people as possible, 
such that for every requisite skill in X, at least one member of the 
committee has that skill.

✔ In the decision version of the set-covering problem, we ask whether a 
covering exists with size at most k, where k is an additional parameter 
specified in the problem instance.

✔ The decision version of the problem is NP-complete



34

The Set-Covering Problem
A greedy approximation algorithm

✔ The greedy method works by picking, at each stage, the set S that 
covers the greatest number of remaining elements that are 
uncovered.



35

The Set-Covering Problem

The greedy algorithm produces a cover of size 4 by selecting either the sets S1, 
S4, S5, and S3 or the sets S1, S4, S5, and S6, in order.

A greedy approximation algorithm



36

The Set-Covering Problem
The algorithm works as follows.
✔ The set U contains, at each 

stage, the set of remaining 
uncovered elements.

✔ The set C contains the cover 
being constructed.

✔ Line 4 is the greedy decision 
making step, choosing a subset 
S that covers as many 
uncovered elements as possible 
(breaking ties arbitrarily).

✔ After S is selected, line 5 
removes its elements from U , 
and line 6 places S into C.

✔ When the algorithm terminates, 
the set C contains a subfamily 
of F that covers X.



37

The Set-Covering Problem
✔ We can easily implement 

GREEDY-SET-COVER to run in 
time polynomial in |X| and 
|F|. 

✔ Since the number of iterations of 
the loop on lines 3–6 is bounded 
from above by min(|X|, |F|), and we 
can implement the loop body to run 
in time O(|X| |F|), a simple 
implementation runs in time

O(|X| |F| min(|X|,  |F|))



38

The Subset-Sum Problem

✔ An instance of the subset-sum problem is a pair (S, t), where S is a 
set {x1, x2, . . . . xn} of positive integers and t is a positive integer.

✔ This decision problem asks whether there exists a subset of S that 
adds up exactly to the target value t.

✔ This problem is NP-complete.



39

The Subset-Sum Problem

✔ The optimization problem associated with this decision problem 
arises in practical applications.

✔ In the optimization problem, we wish to find a subset of {x1, x2 . . .  xn} 
whose sum is as large as possible but not larger than t.

✔ For example, we may have a truck that can carry no more than t 
pounds, and n different boxes to ship, the ith of which weighs xi 

pounds.

✔ We wish to fill the truck with as heavy a load as possible without 
exceeding the given weight limit.



40

The Subset-Sum Problem

An exponential-time exact algorithm



41

The Subset-Sum Problem

An exponential-time exact algorithm

✔ The procedure EXACT-SUBSET-SUM takes an input set S = {x1, x2 , . . .  xn} 
and a target value t.

✔ This procedure iteratively computes Li, the list of sums of all subsets of  
{x1 . . . xi} that do not exceed t, and then it returns the maximum value in Ln.



42

The Subset-Sum Problem

An exponential-time exact algorithm

✔ We also use an auxiliary procedure MERGE-LISTS(L, L’), which returns the 
sorted list that is the merge of its two sorted input lists L and L’ with 
duplicate values removed.

✔ MERGE-LISTS runs in O(|L| + |L’|) time.



43

The Subset-Sum Problem

An exponential-time exact algorithm          

✔ Suppose, S = {104, 102, 201, 101} and t = 308
✔ n = |S| = 4
✔ L0 = (0)



44

The Subset-Sum Problem

An exponential-time exact algorithm          

✔ Suppose, S = {104, 102, 201, 101} and t = 308
✔ i = 1 

L0 = (0)
✔ L1 = MERGE-LISTS(L0 , L0 + x1) = MERGE-LISTS((0), (0+104)) = (0, 104) 



45

The Subset-Sum Problem

An exponential-time exact algorithm          

✔ Suppose, S = {104, 102, 201, 101} and t = 308
✔ i = 2 

L1 = (0, 104) 
✔ L2 = MERGE-LISTS(L1 , L1 + x2) = MERGE-LISTS((0, 104), (102, 206)) = (0, 102, 104, 206) 



46

The Subset-Sum Problem

An exponential-time exact algorithm          

✔ Suppose, S = {104, 102, 201, 101} and t = 308
✔ i = 3 

L2 = (0, 102, 104, 206) 
✔ L3 = MERGE-LISTS(L2 , L2 + x3)

= MERGE-LISTS((0, 102, 104, 206), (201, 303, 305, 407))
= (0, 102, 104, 201, 206, 303, 305, 407)

✔ 407 is removed from L3 as it is greater than 308.
Thus, L3 = (0, 102, 104, 201, 206, 303, 305)



47

The Subset-Sum Problem

An exponential-time exact algorithm          

✔ Suppose, S = {104, 102, 201, 101} and t = 308
✔ i = 4 

L3 = (0, 102, 104, 201, 206, 303, 305)
✔ L4 = MERGE-LISTS(L3 , L3 + x4)

✔ = MERGE-LISTS((0, 102, 104, 201, 206, 303, 305), (101, 203, 205, 302, 307, 404, 406))
= (0, 101, 102, 104, 201, 203, 205, 206, 302, 303, 305, 307, 404, 406)

✔ 404 and 406 are removed from L4 as it is greater than 308.
Thus, L4 = (0, 101, 102, 104, 201, 203, 205, 206, 302, 303, 305, 307)



48

The Subset-Sum Problem

An exponential-time exact algorithm

 L4 = (0, 101, 102, 104, 201, 203, 205, 206, 302, 303, 305, 307) 

✔ Therefore, the algorithm will return 307.
✔ Since the length of Li can be as much as 2i, EXACT-SUBSET-SUM is an 

exponential-time algorithm in general.



49

The Subset-Sum Problem

A fully polynomial-time approximation scheme

✔ We can derive a fully polynomial-time approximation scheme for the 
subset-sum problem by “trimming” each list Li after it is created.

✔ The idea behind trimming is that if two values in L are close to each 
other, then since we want just an approximate solution, we do not 
need to maintain both of them explicitly.



50

The Subset-Sum Problem

A fully polynomial-time approximation scheme

✔ More precisely, we use a trimming parameter δ such that 0 < δ < 1.

✔ When we trim a list L by, we remove as many elements from L as 
possible, in such a way that if L0 is the result of trimming L, then for 
every element y that was removed from L, there is an element still in 
L0 that approximates y, that is

✔ We can think of such a z as “representing” y in the new list L’.



51

The Subset-Sum Problem

A fully polynomial-time approximation scheme

✔ For example, if δ = 0.1 and L = {10, 11, 12, 15, 20, 21, 22, 23, 24, 29} 
then we can trim L to obtain

L’ = {10, 12, 15, 20, 23, 29}

where the deleted value 11 is represented by 10, the deleted values 
21 and 22 are represented by 20, and the deleted value 24 is 
represented by 23.

✔ Because every element of the trimmed version of the list is also an 
element of the original version of the list, trimming can dramatically 
decrease the number of elements kept while keeping a close (and 
slightly smaller) representative value in the list for each deleted 
element.



52

The Subset-Sum Problem

A fully polynomial-time approximation scheme

✔ The following procedure trims list L = {y1, y2 . . . .ym}  in time Θ(m), 
given L and δ, and assuming that L is sorted into monotonically 
increasing order. The output of the procedure is a trimmed, sorted list.

✔ The procedure scans the elements of L in monotonically increasing order. A 
number is appended onto the returned list L’ only if it is the first element of L or 
if it cannot be represented by the most recent number placed into L’.



53

The Subset-Sum Problem

A fully polynomial-time approximation scheme

✔ Given the procedure TRIM, we can construct our approximation 
scheme as follows. This procedure takes as input a set S = {x1, x2 . . .  
xn}of n integers (in arbitrary order), a target integer t, and an 
“approximation parameter” ε, where

0 < ε < 1

✔ It returns a value z whose value is within a 1 + ε factor of the optimal 
solution.



54

The Subset-Sum Problem

A fully polynomial-time approximation scheme



55

The Subset-Sum Problem
A fully polynomial-time approximation scheme

✔ As an example, suppose we have the instance S = {104, 102, 201, 101} with t = 
308 and ε = 0.40. 

✔ The trimming parameter  is δ = ε/8 = 0.05. 



56

The Subset-Sum Problem
A fully polynomial-time approximation scheme

✔ As an example, suppose we have the instance S = {104, 102, 201, 101} with t = 
308 and ε = 0.40. 

✔ The trimming parameter  is δ = ε/8 = 0.05. 

✔ Line 2: L0 = (0),



57

The Subset-Sum Problem
A fully polynomial-time approximation scheme

✔ As an example, suppose we have the instance S = {104, 102, 201, 101} with t = 
308 and ε = 0.40. 

✔ The trimming parameter  is δ = ε/8 = 0.05. 
L0 = (0),

✔ Line 4: L1=  (0, 104),
✔ Line 5: L1 =  (0, 104),
✔ Line 6: L1 =  (0, 104),



58

The Subset-Sum Problem
A fully polynomial-time approximation scheme

✔ As an example, suppose we have the instance S = {104, 102, 201, 101} with t = 
308 and ε = 0.40. 

✔ The trimming parameter  is δ = ε/8 = 0.05. 
L1 = (0, 104),

✔ Line 4: L2=  (0, 102, 104, 206),
✔ Line 5: L2 =  (0, 102, 206),
✔ Line 6: L2 =  (0, 102, 206),



59

The Subset-Sum Problem
A fully polynomial-time approximation scheme

✔ As an example, suppose we have the instance S = {104, 102, 201, 101} with t = 
308 and ε = 0.40. 

✔ The trimming parameter  is δ = ε/8 = 0.05. 
L2 =  (0, 102, 206)

✔ Line 4: L3=  (0, 102, 201, 206, 303, 407)
✔ Line 5: L3 =  (0, 102, 201, 303, 407)
✔ Line 6: L3 =  (0, 102, 201, 303)



60

The Subset-Sum Problem
A fully polynomial-time approximation scheme

✔ As an example, suppose we have the instance S = {104, 102, 201, 101} with t = 
308 and ε = 0.40. 

✔ The trimming parameter  is δ = ε/8 = 0.05. 
L3 =  (0, 102, 201, 303)

✔ Line 4: L4=  (0, 101, 102, 201, 203, 302, 303, 404)
✔ Line 5: L4 =  (0, 101, 201, 302, 404)
✔ Line 6: L4 =  (0, 101, 201, 302)



61

The Subset-Sum Problem
A fully polynomial-time approximation scheme

 L4 =  (0, 101, 201, 302)
✔ The algorithm returns z* =  302 as its answer, which is well within ε = 40% 

of the optimal answer 307 = 104 + 102 + 101; in fact, it is within 2%.



62

1) Why are approximation algorithms important?Write an algorithm that 
computes the approximate solution for the vertex cover problem and 
apply it on the following graph.

2) How can we obtain an approximate solution for the traveling salesman 
problem? Explain with an example.

3) What do you mean by an approximation algorithm? Explain the 
approximation algorithm for the set cover problem.

4) Give an approximation algorithm for the subset sum problem that 
works in polynomial time and show it’s working with an example.

Review Questions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

